first and fourth equations of the Lorentz transformation. Instead of
the equation (A) we then obtain the equation
eq. 09: file eq09.gif
which corresponds to the theorem of addition for velocities in one
direction according to the theory of relativity. The question now
arises as to which of these two theorems is the better in accord with
experience. On this point we axe enlightened by a most important
experiment which the brilliant physicist Fizeau performed more than
half a century ago, and which has been repeated since then by some of
the best experimental physicists, so that there can be no doubt about
its result. The experiment is concerned with the following question.
Light travels in a motionless liquid with a particular velocity w. How
quickly does it travel in the direction of the arrow in the tube T
(see the accompanying diagram, Fig. 3) when the liquid above
mentioned is flowing through the tube with a velocity v ?
In accordance with the principle of relativity we shall certainly have
to take for granted that the propagation of light always takes place
with the same velocity w with respect to the liquid, whether the
latter is in motion with reference to other bodies or not. The
velocity of light relative to the liquid and the velocity of the
latter relative to the tube are thus known, and we require the
velocity of light relative to the tube.
It is clear that we have the problem of Section 6 again before us. The
tube plays the part of the railway embankment or of the co-ordinate
system K, the liquid plays the part of the carriage or of the
co-ordinate system K1, and finally, the light plays the part of the
Figure 03: file fig03.gif
man walking along the carriage, or of the moving point in the present
section. If we denote the velocity of the light relative to the tube
by W, then this is given by the equation (A) or (B), according as the
Galilei transformation or the Lorentz transformation corresponds to
the facts. Experiment * decides in favour of equation (B) derived
from the theory of relativity, and the agreement is, indeed, very
exact. According to recent and most excellent measurements by Zeeman,
the influence of the velocity of flow v on the propagation of light is
represented by formula (B) to within one per cent.
Nevertheless we must now draw attention to the fact that a theory of
this phenomenon was given by H. A. Lorentz long before the statement
of the theory of relativity. This theory was of a purely
electrodynamical nature, and was obtained by the use of particular
hypotheses as to the electromagnetic structure of matter. This
circumstance, however, does not in the least diminish the
conclusiveness of the experiment as a crucial test in favour of the
theory of relativity, for the electrodynamics of Maxwell-Lorentz, on
which the original theory was based, in no way opposes the theory of
relativity. Rather has the latter been developed trom electrodynamics
as an astoundingly simple combination and generalisation of the
hypotheses, formerly independent of each other, on which
electrodynamics was built.
Notes
*) Fizeau found eq. 10 , where eq. 11
is the index of refraction of the liquid. On the other hand, owing to
the smallness of eq. 12 as compared with I,
we can replace (B) in the first place by eq. 13 , or to the same order
of approximation by
eq. 14 , which agrees with Fizeau's result.
THE HEURISTIC VALUE OF THE THEORY OF RELATIVITY
Our train of thought in the foregoing pages can be epitomised in the
following manner. Experience has led to the conviction that, on the
one hand, the principle of relativity holds true and that on the other
hand the velocity of transmission of light in vacuo has to be
considered equal to a constant c. By uniting these two postulates we
obtained the law of transformation for the rectangular co-ordinates x,
y, z and the time t of the events which constitute the processes of
nature. In this connection we did not obtain the Galilei
transformation, but, differing from classical mechanics, the Lorentz
transformation.
The law of transmission of light, the acceptance of which is justified
by our actual knowledge, played an important part in this process of
thought. Once in possession of the Lorentz transformation, however, we
can combine this with the principle of relativity, and sum up the
theory thus:
Every general law of nature must be so constituted that it is
transformed into a law of exactly the same form when, instead of the
space-time variables x, y, z, t of the original coordinate system K,
we introduce new space-time variables x1, y1, z1, t1 of a co-ordinate
system K1. In this connection the relation between the ordinary and
the accented magnitudes is given by the Lorentz transformation. Or in
=12= |