ON THE RELATIVITY OF THE CONCEPTION OF DISTANCE
Let us consider two particular points on the train * travelling
along the embankment with the velocity v, and inquire as to their
distance apart. We already know that it is necessary to have a body of
reference for the measurement of a distance, with respect to which
body the distance can be measured up. It is the simplest plan to use
the train itself as reference-body (co-ordinate system). An observer
in the train measures the interval by marking off his measuring-rod in
a straight line (e.g. along the floor of the carriage) as many times
as is necessary to take him from the one marked point to the other.
Then the number which tells us how often the rod has to be laid down
is the required distance.
It is a different matter when the distance has to be judged from the
railway line. Here the following method suggests itself. If we call
A^1 and B^1 the two points on the train whose distance apart is
required, then both of these points are moving with the velocity v
along the embankment. In the first place we require to determine the
points A and B of the embankment which are just being passed by the
two points A^1 and B^1 at a particular time t -- judged from the
embankment. These points A and B of the embankment can be determined
by applying the definition of time given in Section 8. The distance
between these points A and B is then measured by repeated application
of thee measuring-rod along the embankment.
A priori it is by no means certain that this last measurement will
supply us with the same result as the first. Thus the length of the
train as measured from the embankment may be different from that
obtained by measuring in the train itself. This circumstance leads us
to a second objection which must be raised against the apparently
obvious consideration of Section 6. Namely, if the man in the
carriage covers the distance w in a unit of time -- measured from the
train, -- then this distance -- as measured from the embankment -- is
not necessarily also equal to w.
Notes
*) e.g. the middle of the first and of the hundredth carriage.
THE LORENTZ TRANSFORMATION
The results of the last three sections show that the apparent
incompatibility of the law of propagation of light with the principle
of relativity (Section 7) has been derived by means of a
consideration which borrowed two unjustifiable hypotheses from
classical mechanics; these are as follows:
(1) The time-interval (time) between two events is independent of the
condition of motion of the body of reference.
(2) The space-interval (distance) between two points of a rigid body
is independent of the condition of motion of the body of reference.
If we drop these hypotheses, then the dilemma of Section 7
disappears, because the theorem of the addition of velocities derived
in Section 6 becomes invalid. The possibility presents itself that
the law of the propagation of light in vacuo may be compatible with
the principle of relativity, and the question arises: How have we to
modify the considerations of Section 6 in order to remove the
apparent disagreement between these two fundamental results of
experience? This question leads to a general one. In the discussion of
Section 6 we have to do with places and times relative both to the
train and to the embankment. How are we to find the place and time of
an event in relation to the train, when we know the place and time of
the event with respect to the railway embankment ? Is there a
thinkable answer to this question of such a nature that the law of
transmission of light in vacuo does not contradict the principle of
relativity ? In other words : Can we conceive of a relation between
place and time of the individual events relative to both
reference-bodies, such that every ray of light possesses the velocity
of transmission c relative to the embankment and relative to the train
? This question leads to a quite definite positive answer, and to a
perfectly definite transformation law for the space-time magnitudes of
an event when changing over from one body of reference to another.
Before we deal with this, we shall introduce the following incidental
consideration. Up to the present we have only considered events taking
place along the embankment, which had mathematically to assume the
function of a straight line. In the manner indicated in Section 2
we can imagine this reference-body supplemented laterally and in a
vertical direction by means of a framework of rods, so that an event
which takes place anywhere can be localised with reference to this
framework. Fig. 2 Similarly, we can imagine the train travelling with
the velocity v to be continued across the whole of space, so that
every event, no matter how far off it may be, could also be localised
with respect to the second framework. Without committing any
fundamental error, we can disregard the fact that in reality these
frameworks would continually interfere with each other, owing to the
impenetrability of solid bodies. In every such framework we imagine
three surfaces perpendicular to each other marked out, and designated
as " co-ordinate planes " (" co-ordinate system "). A co-ordinate
=9= |